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in this paper we present some results concerning the stability of flow in a circular 
pipe to small but finite axisymmetric disturbances. The flow is unstable if the 
amplitude of a disturbance exceeds a critical value, the equilibrium amplitude, 
which we have calculated for a wide range of wave-numbers and Reynolds 
numbers. For large values of the Reynolds number, R, and for a real value of the 
wave-number, a, we indicate that the energy density of a critical disturbance is of 
order ct, where - aci is the damping rate of the associated infinitesimal distur- 
bance. The energy, per unit length of the pipe, of a critical disturbance which is 
concentrated near the axis of the pipe is of order R-2, and the wave-number a is of 
order Rg. For a critical disturbance which is concentrated near the wall of the pipe 
the energy is of order R-3 and a is of order Rg. This suggests that non-linear 
instability is most likely to be caused by a ‘ centre ’ mode rather than by a ‘wall ’ 
mode. The wall mode solution is also essentially the solution for the problem of 
plane Couette flow when aR is large. We compare it with the true solution. 

i n  an appendix Dr A. E. Gill indicates how some of the results of this paper may 
be inferred from a simple scale analysis. 

1. Introduction 
It is generally believed that the flow of a viscous incompressible fluid in a 

circular pipe under the action of a constant pressure gradient is stable to both 
axisymmetric and non-axisymmetric infhitesimal disturbances. This theoretical 
knowledge is supported by experimental evidence, provided that the experiments 
are performed with considerable care as regards the inlet conditions and the 
smoothness of the inner wall of the pipe. However, in the majority of experiments 
which are executed with only reasonable care, the flow usually becomes unstable 
when the Reynolds number, based on the pipe radius, exceeds a value of about 
2000. 

it seems likely therefore that pipe flow is probably unstable if the flow contains 
small but fmite disturbances which are sufficiently large; how large will depend 
upon their wave-number and the Reynolds number of the flow. In  this paper we 
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have calculated these equilibrium amplitudes (which are sometimes referred to in 
the literature as ‘neutral’ or ‘critical’ or ‘threshold’ amplitudes), using the 
method of Landau (1944) as developed by Malkus & Veronis (1 958), Stuart (1960), 
Watson (1960) and Reynolds & Potter (1967). The small parameter in the 
expansion which we shall use, following Watson, is the amplitude A of the dis- 
turbance. There is no neutral stability curve for linearized theory in this problem, 
and we do not pretend that the equilibrium amplitudes which we obtain are 
particularly accurate. However, we do feel we have shown that the effect of the 
non-linear terms is to make the flow less stable. Also, our results should give a 
good indication as to how the size of a critical disturbance will vary with the 
wave-number a: and the Reynolds number R. We discuss the validity of the 
expansion procedure, and some asymptotic results for large values of aR in § 4. 

Although it is possible that corresponding, though much more involved, cal- 
culations for non-axisymmetric disturbances might yield smaller equilibrium 
amplitudes, though of the same order of magnitude, we feel nevertheless that the 
results presented here are important in their own right, and in particular they 
establish a yardstick for comparison with any future non-linear stability calcu- 
lations which may be done for the pipe flow problem. The best experimental work 
on this problem is probably that due to Leite (1959), although his results are not 
entirely conclusive. In his experiments Leite tried to introduce disturbances 
with no symmetry. He found, however, that the disturbances became more 
axisymmetric as they progressed downstream, indicating that the non-axisym- 
metric part of the disturbance was more heavily damped than the axisymmetric 
part. This seems to be a good justification for at least considering the problem of 
axisymmetric disturbances. Some experimental work has also been done by Fox, 
Lessen & Bhat (1968). 

We have considered disturbances which grow, or decay, with time, rather than 
downstream distance, so as to minimize the amount of computer time required. 
For comparison with experimental results it would perhaps have been preferable 
to do otherwise. However, our results for temporally growing, or decaying, 
disturbances should illustrate all the qualitative features of the problem, and 
one may use a transformation, due to Gaster (1963), to obtain the corresponding 
results for spatially amplified disturbances for comparison with experiment. 

The principal results of this paper are contained in figures 6 , 7  and 8. In  figure 6 
we indicate how the energy of a critical disturbance which is concentrated near 
the centre of the pipe depends upon the wave-number and the Reynolds number. 
In figure 7 we show the corresponding result for a critical disturbance which is 
concentrated near the wall of the pipe. The solid line drawn in figure 7 is applicable 
to the problem of plane Couette flow. The true solution for plane Couette flow is 
given in figure 8. 

2. Determination of the Landau constant 
We suppose that the fluid is incompressible and has kinematic viscosity v, that 

the pipe is infinitely long and that the pressure gradient is maintained at  a 
constant value. The undisturbed flow is parabolic with velocity U, on the 
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centre-line. We choose Uo and a, the pipe radius, as the characteristic velocity and 
lengthrespectively,withrespect to which we make our quantities non-dimensional. 
Let x, r be the non-dimensional co-ordinates in the streamwise and normal 
directions respectively. We define a Reynolds number by 

R = Uoalv. (1) 

We shall examine the stability of the flow only to axially symmetric disturbances, 
so that quantities will be invariant with respect to the azimuthal angle. Let 
u, v denote the velocities in the x, r directions respectively. A n  overbar represents 
the average over one wavelength, and the suffix ‘1’ refers to the basic laminar flow. 
The externally applied mean pressure gradient is taken to be invariant as regards 
a distorted mean flow, so that 

(2) p = - 4x/R + constant. 

1 a+ 1 a+ 
To satisfy the continuity equation we express the velocity field via a stream 

(3) 

function + so that 

We consider disturbances whichgrow with time (temporal) and which are periodic 
in distance downstream, so that the stream function 9 may be represented by a 
Fourier series of the form 

u = - -  ‘ u= - - -  
r ar’ r ax * 

$J = +o(r, t )  + +,PY t )  exp ( i 4  + 41(r, t )  exp ( - i 4  

+ &(r, t )  exp (Six) + &(r, t )  exp ( - Six) + higher-order terms, (4) 

where z = ax+wt .  A ‘tilde’ denotes a complex conjugate and a is a real wave- 
number. 

We shall use th.e equilibrium amplitude method of Malkus & Veronis (1 958) as 
developed by Reynolds & Potter (1967). Let A be the real equilibrium amplitude 
of a disturbance, then we seek a solution of the Navier-Stokes equations of the 
form : 

The mean motion 5 is given by an equation of the form 

where ?it = 1 -rz. ( 8 )  

The function f , (r)  measures the distortion of the mean motion by the Reynolds 
stresses. 

Por our purpose we will not need to know any of the higher-order terms, as we 
intend to calculate only the first Landau constant A,, so that the frequency w of 
the disturbance will be of the form 
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We must determine the smallest value of A which will make o real. We choose 
this method, in preference to that of Watson (1960), which does not appear to be 
valid for subcritical flows as the distortion of the mean motion cannot be expressed 
as a power series in the amplitude A .  Also, the method of Reynolds & Potter does 
not require the damping rate of the associated infinitesimal disturbance to be 
small, moreover, the Landau constants are defined uniquely. Because we only 
calculate the first Landau constant we hope that the term of order A2 in (9) will be 
the dominant non-linear term. Our evaluation of the equilibrium amplitude 
ignores the other non-linear terms and is therefore only an approximate method; 
more discussion of this point is given in 8 4. 

The associated infinitesimal disturbance will be of the form ei(a5-flt) where a is 
real and /3 is complex. If we make the Fourier substitution and the above ex- 
pansion (9) in powers of A in the Navier-Stokes equations we obtain the following 
basic equations and boundary conditions. 

The equation for the fundamental eigenfunction is 

Lg, = 0, where L = [M - iaR( 1 - r2 - c ) ] M ,  (10) 

and M = 0 2 -  r-lD - a2, (D E dldr).  (11)  

In  (10) above c = /3/a is the wave speed of the disturbance, which is complex, and 
in (1 1)  we note that the operator r-lM is self-adjoint. The boundary conditions at  
the centre of the pipe are that the disturbance should be axially symmetric and 
bounded. Together with the Frobenius series for @, near r = 0 these imply that 

= r2 + O(r4),  for small r ,  (12) 

where, for numerical convenience, we take the coefficient of r2 to  be unity as our 
normalizing condition. We could, however, have chosen many different normal- 
ization conditions, and this point will be important in $ 4  when we discuss the 
dependence of the terms in the series on the right-hand side of (9), for large 
values of the parameter aR. The boundary conditions on $, a t  the wall are the 
no-slip conditions 

@1 = $; = 0 when r = 1,  

where a ’ denotes differentiation with respect to r .  If the flow were inviscid, then 
the stream function, x say, satisfies Mx = 0, so that any inviscid solution satisfies 
the Orr-Sommerfeld equation, though not the boundary conditions. 

In order to calculate the integrals which determine the value of the Landau 
constant A,, we shall need the function 8 which is adjoint to el. We define the 
adjoint operator and the adjoint function 8, apart from its normalization, so 
that 

(14) 

for any well-behaved function @ which satisfies the same boundary conditions as 
$,. Because r-l[N - iaR( 1 - r2 - c ) ]  is also self-adjoint, we merely have to 
commute the operators in (10) so that 

1; 5 8L+dr = 0, 

3!% = 0 where = M [ M  - iaR( 1 - r2- c ) ] .  115) 



Stability of pipe flow 705 

The boundary conditions are the same as for the eigenfunction $1, namely 

8 = r2 + O(r4) for small r ,  

8 = 8‘ = 0 when r = 1. 

The eigenvalue c obtained from (15) with (16) serves as a check on the numerical 
work. The normalization of the adjoint function 8 does not need to be the same as 
for $1, we have done this solely for numerical convenience. The vorticity Cl is 
given by - rCl = M$,; it follows that rCl satisfies the adjoint equation E(rCl) = 0 
and the boundary conditions on 8 at T = 0 but not those at r = 1. 

The harmonic function $2 is the dominant term in $2, the coefficient of e2iz, 
and we find that for this problem its contribution to the value of the Landau 
constant is substantial; it derives its energy from the fundamental. The equation 
for $2 is 

[N-SizR(l  - r2-c) ]N$2 = ~ { ( T D $ ~ + ~ $ ~ ) M $ ~ - ~ $ ~ D M $ ~ } ,  (17) 

where N = 0 2  - r-ID - 4~x2. (18) 

$2(0) = $a)) = $2(1)  = $21) = 0. (19) 

iaR 

The boundary conditions are 

We note that (1 7) is an inhomogeneous equation for +2 so that we have a direct 
two-point boundary-value problem. We have to find the coefficients in the power 
series of $2 for small T which will make 11f2(1) and $;(1) zero when we integrate 
from 0 to 1. 

We also need the equation for the function fl, which, together with A ,  will 
tell us by how much the mean flow has been distorted from its parabolic profile. 
The equation for fl is 

(20) 
1 iaR f’; + ;f; = 7 {$I M$1- $1 M$lh 

and the boundary conditions are 

f ; ( O )  = 0 and fl(l) = 0. (21) 

The formalism of Watson (1960), as used by Ellingsen, Gjevik & Palm (1970) for 
the problem of plane Couette flow, requires an additional term - 2aRci fl to be 
added to the left-hand side of (20) where ci is the imaginary part of the eigenvalue 
c = c, + ic,. This term arises from a;iz/at which is identically zero in the equilibrium 
amplitude formulation of Reynolds & Potter, and it is this same term which 
appears to invalidate the formalism of Watson for subcritical flows. More dis- 
cussion of this point is contained in 0 5. We note that the function fl, as defined by 
(20) with (21) is real. 

The equation for $-ll(r) is 

i (~zR)- lL+~~ = - A, M$l + g(r ) ,  

r2g(r) = [@$; - 4$2) M$l+ fLr$2DM$1 - v$; - $1)N$2 - r$1DN$-21 

(22) 
where 

+ rkf” - f ’ f  $1 - rfM911, (23) 
45 F L U  45 



706 A .  Davey and H .  P.  F .  Nguyen 

and the boundary conditions on $,, are the same as those on $,. The operator L is 
singular and A, is determined uniquely by multiplying ( 2 2 )  by the adjoint 
function 8 and integrating from r = 0 to  r = 1. Hence the value of A,, the first 
Landau constant, is given by 

To determine the equilibrium amplitude of a neutral or ‘critical ’ disturbance 
we do not consider the term in (9) of order A*. (The probable error involved due 
to this approximation is discussed in 0 4.) We require that o shall be real so that 

0 = - a ~ i + a A , i A ~ ,  ( 2 5 )  

where A, = A,,+ iAli. It follows that an  equilibrium state A = A,, is given by 

For the pipe flow problem we know that infinitesimal disturbances are damped so 
that c,  is negative. Hence, i t  follows from (26) that  A,, must be negative for us to 
obtain a real equilibrium amplitude. This was indeed the case for the range of 
wave-numbers and Reynolds numbers for which A, was calculated. Such dis- 
turbances are said to  be subcritical; the non-linear terms have made the flow less 
stable. The equilibrium flow will be unstable, in the sense that a disturbance with 
A just larger than A ,  will grow, and if A is just less than A,  it will decay. 

3. Numerical methods of solution 
The principal numerical difficulty associated with the type of problem dis- 

cussed in this paper lies in the fact that the characteristic values associated with 
the Orr-Sommerfeld differential operator fi differ greatly in their real parts. 
The problem is ill-conditioned because the viscous complementary functions 
dominate the inviscid ones and make it difficult to determine what linear com- 
bination of the complementary functions will satisfy the given boundary 
conditions. 

Our calculations cover a range of the parameter aR up to 20,000. For values of 
uR up to about 3000 one can use straightforward shooting methods with single 
precision arithmetic on a machine which will store numbers to  an accuracy of 
12 decimal digits. Using double-precision arithmetic one may extend the value of 
aR up to about 9000. For values of uR greater than 10,000 one must use special 
techniques. One method which has been used recently with considerable success 
is that due to  Kaplan (1964)) which is discussed in detail by Betchov & Criminale 
(1967). We found that Kaplan’s method worked very well for disturbances which 
were concentrated near a solid boundary. However, the disturbances with which 
we are most concerned, in this paper, are concentrated near the centre of the pipe, 
away from the boundary wall. It was found that for these disturbances Haplan’s 
method would not work at all. Our evidence supports the suggestion by Sharma 
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(1968), in an important contribution to stability theory, that whatever filter one 
uses in Kaplan’s technique, integration through a viscous region, in generating 
a well-behaved solution, will be inaccurate. Thus, if one has two viscous regions, 
one near the boundary wall, and one well away from the wall, then the integration 
will be inaccurate over the whole range between the two viscous regions, We feel 
that if one uses Runge-Kutta, or some similar integration technique, it is 
much better to use a proper orthonormalization procedure. Perhaps the best 
method for solving problems of this kind is to use the improvement of the ortho- 
normalization technique due to Conte (1966). 

For values of aR greater than 9000 we used Chebyshev polynomials and a 
matrix method, due to Wilkinson (1965), to calculate the eigenvalues; but solely 
because we had this program readily available. It was, however, rather more 
inefficient as regards run-time and storage requirements than if we had used an 
orthonormalization method. 

We now describe briefly a very simple method which may be used for the 
solution of any Orr-Sommerfeld problem however complicated it may be. We 
developed this method to solve a double boundary-layer problem of sixth-order, 
partly because Kaplan’s method becomes rather difficult to comprehend when 
one needs multiple filters. Moreover, this method is very easy to understand and 
to program. 

Suppose, for example, that L($) = 0 where L is a fourth-order operator con- 
taining an eigenvalue c, and suppose that the range of integration is 0 6 x 6 1, 
and that we have two boundary conditions on $ at each end. Let y = {$, $’, 
$“, $’”), and choose say 100 steps of length h = 0.01. Now if we are given a con- 
dition y = y$ when x = ih and we integrate to obtain y = yi+l at x = (i + 1)h then 
yi+l = Aiy, where Ai is a 4 x 4 matrix whose elements will be independent of yi. 
By letting yi have the values {0,0, 0,1), ( O , O ,  1,0), (0,1,0,0> and (1,0,0,0> in 
turn we may readily determine A$ and we can do this for each subinterval to find 
AO, A2, A3, .. ., Ag9. 

Now, the important point is that, having decided upon the step-length h and 
the integration routine to be used, these matrices constitute complete know- 
ledge of the problem. When the problem is not ill-conditioned the relationship 
yloo = By, may be obtained by a direct shooting method. For ill-conditionedprob- 
lems truncation errors and the rapidly growing solutions will maZform B. But 
as we have found the Ai separately, we may obtain B from 

B = Ag9A ”... AIAo. 

We may then use any standard iterative technique to find the eigenvalue c and 
the eigenfunction from yo = B-lylo0. We are guaranteed of a successful calcula- 
tion because the step-length h may be chosen so small that all the matrices Ai will 
be well formed, however large aR may be. We must remember to recalculate 
the A+ each time that we change c in the iteration procedure. 

The beauty of the method lies in its simplicity; for an nth order differential 
system the only difference will be that the matrices Ai will be n x n. There is no 
need for the integration steps to be of the same length ; also, the integration may 
be over any range and in either direction. 

45-2 
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The method may also be used for an inhomogeneous two-point boundary-value 
problem L($) = f. The relationship between yi and y4+l is now of the form 

yi+l = Aiyi + fi. 

The F are found by integrating with yi = (0 ,  0, 0, 0) and the Ai may then be found 
as before. The relationship between yo and yloo is now given by 

~ i o o  = BY, + F, 

where B is as found before and F will be a known function of the Ai and fi. 
The method is not as computationally efficient as that of Conte; we feel, 

however, that the simplicity of complete orthonormalization outweighs this 
disadvantage. 

4. Equilibrium amplitude results 
Typical eigenvalues of equation (1 0) are as given in figure 3 of Davey & Drazin 

(1969). There are two types of disturbances which, on a linear tJheory, are only 
slightly damped, and we refer to these as ' centre ' modes and ' wall ' modes; the 
names indicate thc regions respectively where the critical layers lie. For values of 
aR between about 3000 and 10,000 the damping rate of the first centre mode is 
approximately half that of the second centre mode, and the damping rate of the 
first wall mode is about the same as for the second centre mode. We have con- 
centrated our calculations on the first centre mode, the least damped infinitesimal 
disturbance. We did also, however, obtain results for the first wall mode (these 
may be obtained without any difficulty using Kaplan's method), as for large 
values of aR this is also essentially the solution for the problem of plane Couette 
flow. 

Before we discuss the results in detail we wish to examine the truncation of 
(9) at  the quadratic term when calculating the equilibrium amplitude. We 
illustrate the idea by first considering the problem for a wall mode, for which the 
critical layer has a width of order (aR)-f for large values of aR. For the moment 
we also suppose that a is small compared to R* so that conditions change most 
rapidly in the radial direction. It is convenient for this discussion to use a 
different normalization from that used in the numerical method, namely we 
require that 

Because r is almost unity equation (17) for $2 tells us that 

(27) $l N (aB)-R 

(01R)-lD4$-, N D3$i, 

where the derivative D N (aR)*, so that $2 N (aR)-Q. A glance at equation 
(2.1.12) of Watson (1960) indicates that 

(ER) - 'D~$~  N D3$l$n-ll 
so that for all n, N (aR)-%. This is why we chose (27) as our normalization 
condition. Also, we may estimate the order of the mean-motion functionsf, from 

Oaff, N aRD2$;, 
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so that for all n, f ,  - (ax)-*. The first Landau constant A, is of the same order as 
terms like D$2 and f ,  which are both of order (a&)-f so 

A, N (aR)-*. (28) 

Now, if we equate powers of A4 in (2.1.10) of Watson's paper we see that, if A, 
denotes the nth Landau constant, then 

and so all the A, are of order (aR)-j. (This result was stated by Ellingsen et al. 
(1970) for the plane Couette flow problem.) It follows that the equation to 
determine A: obtained by requiring that o be real in (9) takes the form 

or 0 = - c , ~ +  ( a R ) d A 2 [ a , + ~ , A 2 + ~ , A 4 +  ...I, (30) 
where a,, a,, a2, . . . are independent of aR for large values of this parameter. But 

(31) 
c, N (aR)-f and so 

0 = u,+A2[a,+a2A2+a,A4+ ...I. 
Thus, as Ellingsen et al. discuss, taking A: = -a,/a, will only give a crude 
approximation to the true equilibrium amplitude. One hopes that the numericaZ 
convergence of (31) is fairly rapid; the calculation of a2 is much more involved 
than that of a, and a t  least the value of A,  obtained from - a,/a, should give the 
correct trend for different values of a and R. 

For the centre modes the critical layer has a thickness of order (aR)-*. For 
these modes we require, for the moment, that a < R* and as a normalization 
condition we impose 

Because r is small and of order (aR)-i equation (17) for ?,h2 now tells us that 

(32) 7/9, - (aR)-l. 

where now D - (aR)S, so that $2 N (aR)-l and as before we can show that for all 
n, $, N (aR)-l. Moreover, (20) tells us that f ,  - aRD2$2, so that f,, and indeed 
also f, for all n are of order (aR)-&. The first Landau constant is of the order of 
terms like D2$, andf, which are both of order (aR)-i. Also, (29) is still valid, and 
as the $,are of the same order, for all n, we have A, N (aR)-B. Hence the equation 
to determine A: is of the form 

0 = - c ~ +  ( C ~ R ) - L ~ ~ [ C Z , + U , A ~ + ~ , A ~ +  ...I, (33) 

where the a, are independent of aR and we know that ci - (aR)-k We have the 
same situation as before and we hope that the series converges fairly rapidly. 
Thus our results are approximate but at  the very least they do indicate that the 
non-linear terms make the flow less stable. 

We stress that this truncation result is independent of the way in which we 
normalized @,. Por example in $ 2  we supposed that Fi(0) = 2 for numerical 
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convenience. This implies that $l N (a:.&-* and we may use similar reasoning to 
show that A will be of order (aR)-d and that A, will be of order (ctR)n-a, so that 
(33) becomes a series in aRA2 instead of A2. Whatever the normalization on 
$1, A$., will always be of order (aR)-l. A more detailed analysis indicates that 
(30) and (33) are still valid when a: is of order Rt or Rf respectively, and we shal 
return to  this point in $ 5 .  

111 figure 1 we present a typical stream function $,, for a = 6.2 and R = 500 
when cT = 0.9492 and ci = - 0.0632 also A,, = 2.351 and A,$ = - 23.17. We see 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

r 

FIGURE 1. The real and imaginary parts of the eigenfunction E R%Ae@l for a = merit 
= 6.2 and R = 500. The eigenvalue c is given by c, = 0.9492 and ci = -0.0632. 

FIGURE 2. The real and imaginary parts of r-'+; for a = 6.2 and R = 500. 
We plot H R%A,++;. 
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that for r > 0-5 then $l is almost a linear function of r and that it vanishes when 
r = 1 .  In figure 2 we plot r-I+i, which is a measure of the streamwise disturbance 
velocity. In  figure 3 we show the corresponding vorticity Cl, which is concentrated 
near the centre of the pipe and is almost zero for 0.4 < r < 1.  We plot r-lCl, which, 
for inviscid flow, remains constant following a fluid particle. I n  figure 4 we plot 
the mean-motion function fi(r), which determines, apart from the factor A:, the 
distortion of the mean motion. We note that fl is very small outside the critical 
layer. Also, in figure 4, we plot G = -A:  f i / r  because - U f / r  = 2 + G and a neces- 
sary condition for instability of an axisymmetric profile ii is that lii’jrl should 
have a local maximum somewhere in the fluid, and G satisfies this condition. 

FIGURE 3. The real and imaginary parts of the vorticity divided by r for a = 6.2 and 
R = 500. We plot Z = A e ~ - l c 1 .  

If equation (20) for fi had contained the additional term due to auiat, the 
character of fl would have been changed considerably. We see that fl has its 
maximum value on the axis so that the modified profile contains a jet-like tongue 
around the axis, and an inflexion point near the axis. The ordinate scaling in 
figures 1 ,2 ,3 ,4  is chosen so that for values of aR greater than about 2000, the 
scaled functions will be of the same size for fixed values of R-fa. We shall see 
later that, for fixed large R, the value of a: of most interest will be the same 
constant multiple of Rf. 

I n  figure 5 we show some equilibrium amplitude curves which we have obtained 
for R = 300 and R = 500 over wave-numbers a from 3 to 8, plotted as curves of 
constant R. We notice that a t  a fixed value of the Reynolds number the equili- 
brium amplitude does not become a minimum until a is quite large. Thus the 
results for plane Couette flow obtained by Ellingsen et ul. would have been dif- 
ferent if they had done calculations for larger wave-numbers. We indicate in the 
next section that the important values of a: are such that the wavelength of the 
disturbance is of the Same order as the thickness of the critical layer. 
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FIGVRE 4. 

.1  

r 

The distortion of the mean motion fi, for cc = 6.2 and 
We plot F E R3A: fi, and also G E - A4r-Y;. 

R =  500. 
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It is important that the results given in figure 5 should be interpreted correctly. 
We recall that, for numerical convenience, we normalized our eigenfunction yil 
so that $l = r2 + O(r4) for small values of r. This means that on the centre-line 
of the pipe the axial disturbance velocity is 2A, U,,, which will be of order (aR)d U,. 

For the whole range of a, R covered we found that the contribution to the value 
of Ali due to the harmonic terms in (23) was smaller than, and opposite in sign to, 
the contribution due to the mean-motion distortion terms. 

5.  Discussion 
We feel that the question which one would like to be able to answer is as follows: 

given a value of R, that is a fixed flow speed U,, on the centre-line for the undis- 
turbed flow, what is the largest disturbance which will still just decay? One could 
perhaps answer this question if one could determine a value of a which would 
make, perhaps A,, a minimum when considered as a function of a. Most calcula- 
tions in the literature examine the behaviour of A, as a function of R when a is 
kept fixed. This does not seem to us to be quite what is required. Our question is 
also concerned with how one should measure the size of a disturbance. Moreover, 
there seems to be no result in the literature for large values of the wave-number 
a of the order, say, of Ra for some a > 0. For instance, experimental evidence 
indicates that quite often when a flow becomes unstable, a large wave-number 
disturbance is initially discernible. 

It has been suggested by Professor J. T. Stuart (private communication) that 
the size, E ,  of a disturbance may be measured by the ratio of the energy of the 
disturbance to the energy of the basic flow per unit length of pipe. To first order in 
A2, E is given, for the critical disturbance, by 

We suggest that if, in a given problem, and at sJixed value of the Reynolds 
number, E has a minimum for some value of a, then that is what one wouldlike to 
know. For the centre modes, and for a < R&, the contribution to E comes mainly 
from the streamwise component of the disturbance velocity so that, for large 
values of aR, we have E - (aR)+A,2$; and as A:$? N ci(aR)-8 then E N ci(aR)-l. 
Gill ( 1963) has shown that, for large values of aR, ci is-given to a very good approxi- 

(35) 
mation by 

- ci(aR)+ = (a/R) (aR)Q + 28. 

When a < R)  then we see that E - (aR)-Q so that the energy density is of order 
(aR)-l or cf. But this last result must also be true when a is of order R4, we have 
simply neglected some terms of the same order of magnitude as those which we 
have retained. Moreover, in § 6 we will indicate that the energy densityisprobably 
of order ct even when a & Ri. 

We note that the two terms on the right-hand side of (35) are comparable 
when a N R* which is when the wavelength of the disturbance is comparable with 
the thickness of the critical layer and so we may expect conditions to change. 
Viscous dissipation due to the radial component of the disturbance velocity 
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becomes important and the second term in the integrand of (34) is of the same 
order as the first term. For larger values of a we may argue that there will be so 
much viscous dissipation of energy that E ,  for a critical disturbance, must 
increase with a when a B Rs. It is probable therefore that E will be a minimum 
when a is of order R*t in which case E m i n  N Rp2. This result is predicted by the 
scale analysis o f  the appendix to this paper by Dr A. E. Gill. 

I I I I I I I  

0.5 0.6 0.7 0.8 0.9 1 -0 

R - b  

FIGURE 6 .  The energy E of a critical centre disturbance for R 2 300. 

This result was also confirmed by our numerical results. In fact we find that the 
asymptotic theory is valid even when R is as small as 300, the error being ex- 
ponentially small for large values of aR. I n  figure 6 we plot R2E against R-)a for 
the critical disturbance, this curve may be used for all values of R 2 300. We see 
that the critical value of ais approximately 0.77Riand that Eminis approximtLtely 
560R-2. 

For the wall modes, and for a < Rt, the contribution to E comes again mainly 
from the horizontal component of the disturbance velocity so that, for large 
values of aR, we have E = E, N AiDy?;. For the wall modes Aty?: is of order 
ci(aR)-l andD - (aR)* so that E, N ci(aR)-%. For large values of aR, ci is given to 
a very rough approximation by 

( 36) 

When a RS then E, - (aR)-l so that, as for the centre modes, the energy 
density is again of order cf. This result is also true when a is of order RB. Section 6 
and the appendix indicate that this will be true also when a $ 1 1 6 .  It follows that 
for the wall modes E will be a minimum when a is of order Ra in which case 
Emin - R-8. Thus Emin will be much larger for the wall modes than for the centre 
modes, and this is why we concentrate our attention on the centre modes in this 
paper. 

The above asymptotic result was again confirmed by our numerical results. 
The error in the asymptotic theory is now algebraic for large values of aR. In 
figure 7 we plot RgE against R-$a for the critical disturbance, this curve may be 
used for R 3 1500. For comparison the position of the 'dashed' curves are the 
results for R = 625 and R = 900. For values of R greater than about 1500 we see 

-f Thus the most 'dangerous' disturbance will have approximately equal amounts of 
energy distributed between its different degrees of freedom. 

- ci(aR)* = (a /R)  (aR)% + 1.687. 
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It is important to remember that the content of this paper is a high Reynolds 
number theory and the results which we have obtained for, say, R < 500 may be 
only of academic interest. The smaller the value of R, the more important it is 
to know the values of the higher Landau constants, and to know wherc the 
singularities of CR,xn are, so that an appropriate Eulerian transformation, 
probably of the form z* = x/( 1 + yx), may be used, for some value of y > 0. 

Mode - c, h Xwit E m i n  E D  E D m i n  

Centre (aR)-B (aR) -t Rk R-2 C; B-6 
Wall (aR)- i  (aR)-) R4 R-% C? R-' 

TABLE 1. Some orders of magnitude. The length scale h i s  the thickness of the critical layer, 
and ED is the energy density in this layer 

The principal difference between the formalism of Watson (1960) and the 
equilibrium amplitude approach of Reynolds & Potter (1967) is that Watson's 
equations take into account the growth (or decay) of the disturbance with time, 
whereas the equilibrium amplitude analysis supposes that the disturbance has 
already attained its equilibrium value. A consequence of Watson's method is 
that an additional term - 2aRci fl, appears on the left-hand side of (20), the 
equation for the distortion of the mean motion. The inclusion of this term, which 
arises from aii/at, radically alters the solution for fl because the associated homo- 
geneous equation for fl, namely 

with boundary conditions (21) admits eigensolutions when - ZaRc, = y2 and 
y is a zero of the Bessel function J,. Moreover, the equations for the higher-order 
functions f,, admit eigensolutions when - ZnaRc, = y2 .  Thus, for subcritical 
flows the expansion of the mean motion U as a power series in A2 does not appear 
to be valid. The partial differential equation for U is similar to the heat conduction 
equation with a heat source distribution which decays exponentially with time. 

We feel that this may have a bearing on the paper by Pekeris & Shkoller (1969). 
They found, for plane Poiseuille flow, that strong non-linear instability arose from 
the interaction of a wall mode and a centre mode and a mode of zero frequency 
(the mean motion), when the frequencies of the wall mode and the centre mode 
were very close together. They obtained rapidly growing solutions for a 'three- 
wave' resonance type situation. The resonance arose because the real parts 
of their eigenvalues were not well separated. Their work is an important con- 
tribution to our understanding of non-linear stability theory. We feel, however, 
that their representation of the mean-motion distortion may not have been very 
accurate. The paper by Hasselmann (1967) is very relevant. 

f ;r+(l /r) f ; -2aRci f i  = 0, (37)  

6. Conclusions 
The principal result of this paper is that at  a fixed large value of the Reynolds 

number, R, pipe flow will become unstable when the energy density of a small but 
finite disturbance is of order R-* in the critical layer, which will be situated close 
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to the axis of the pipe. The wave-number will be of order Rf, and the disturbance 
will probably be either axisymmetric or the first non-axisymmetric mode. The 
results which we present in figure 7 for disturbances which are concentrated near 
the wall of the pipe are very relevant to the sister problem of plane Couette flow. 

It is interesting that for both the centre modes and the wall modes the energy 
density of a critical disturbance is of order c5. This property invites us to make 
two conjectures. First, for given a, R the disturbance which will concern us will 
probably be the one which has the smallest value of - ci. Hence as, for the centre 
modes, it is believed that the first non-axisymmetric mode gives a smaller value 
of -ci, this mode may be more important than the first axisymmetric mode, 
although the order of magnitude for large values of aR will be the same. Second, 
because the centre inodes are far away from the boundary and the wall modes are 
very close to the boundary, and yet for both cases we obtain the same result, it 
seems that it should be possible to develop a ‘local’ theory for finite disturbances 
in a critical layer, and this is indeed done in the appendix. 

If u and 5 are a typical disturbance velocity and vorticity in the critical layer 
for a two-dimensional flow, the equation for the disturbance vorticity 6 is very 
roughly of the form Q + UQ = R-l(Qx + 6,). 
In  (38) a suffix t denotes a time derivative, and suffixes x, y represent derivatives 
in the streamwise and normal directions respectively. Now a balance between 
the linear terms in (38) tells us what the damping rate - aci of the associated 
infinitesimal disturbance will be ; either cxz or (,,, will dominate on the right-hand 
side of (38) according to whether a + Rh or a < RB respectively. Now & and 
UQ will have orders of magnitude aci[ and aug respectively and so when u w ci 
the non-linear terms will be of the same order of magnitude as the linear terms. 
When a is of order unity, Benney & Bergeron (1969) have examined two-dimen- 
sional disturbances forwhich non-linear effects dominate over Reynolds stresses in 
the region of the critical layer. Their solutions are neutral disturbances which 
require e(aR)Q B 1, where c is a measure of the amplitude of the disturbance 
stream function. 

Our work is deficient in that we considered disturbances which were periodic in 
space rather than time. Nevertheless, we feel that the results presented here 
embody at  least the qualitative features of the pipe flow problem. They should 
also be useful for comparison with any similar calculations which may be made 
for non-axisymmetric disturbances which may have smaller damping rates and 
which may yield smaller equilibrium amplitudes. We hope that our discussion of 
the equation for the distortion of the mean motion, and the relevant expansion 
procedure, may stimulate further attention to these points. 

We are greatly indebted to Dr D. Schofield for much valuable advice, and to 
Dr A. E. Gill and Dr 8. Richardson for many helpful suggestions .The work of one 
of us (H.P.P.N) was done whilst he was a t  the Mathematical Laboratory, 
University of Cambridge. 
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Appendix : Some comments on scales 
By A. E. GILL, Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

In  the main paper, it is shown that finite amplitude disturbances to Poiseuille 
flow in a pipe are damped less rapidly than would be expected from linear theory. 
The most interesting result is the estimate of the smallest amount of energy an 
axisymmetric disturbance must have in order to be undamped. The disturbance 
with this property is, for large Reynolds numbers, confined to a thin region near 
the centre of the pipe. It follows, therefore, that the characteristic scales of this 
disturbance can depend only on v, the kinematic viscosity of the fluid, and 
I Ubl, the curvature of the velocity profile at  the centre of the pipe. The length 
scale, I,, of the disturbance is therefore 

1, = (v/l U J ) i  = a(2R)-), 
and the velocity scale is 

u, = (v2/U,"[)$ = U0(2R-2)4. (A 2) 

If these scales are used, the large Reynolds number results of the main paper may 
be expressed in a form which is independent of the Reynolds number. Thus 

.&--2 = l.rrER2 6 (A 3) 

becomes a function of &l, = a(ZR)-) (A 4) 

only, as shown in figure 6,g being the (dimensional) disturbance energy per unit 
pipe length and & the (dimensional) wave-number. The smallest value of B is 
about 30019 when & is 0.6 I;1. 

The scale analysis requires that the disturbance vorticity/radius be of the same 
order as the basic-flow vorticity/radius. This quantity is of interest as it is 
preserved in inviscid axisymmetric motion, and its value for the basic flow is 
I Ub I uniformly over the whole of the pipe. For the minimum-energy disturbance, 
figure 4 shows that the mean vorticity/radius becomes 3 times the basic-flow 
value at a radius of 1.4 lc, and figure 3 shows that the r.m.s. value in the funda- 
mental is 6 times the basic flow value a t  the centre of the pipe. Thus, if an axi- 
symmetric disturbance is not to decay, it must produce sizeable changes in the 
vorticity/radius, but it need only make these changes locally near the centre of 
the pipe. The scales 1, and u, are, of course, equally appropriate to non-axisym- 
metric disturbances but no quantitative information is available a t  present. 

Wall modes 

One may also have undamped disturbances confined to a thin region near the wall. 
The scales for these disturbances can only depend on v and the local shear I ?I;,\. 
The length and velocity scales are therefore 

2, = (v/l UkJ)h = n(2R)-bt (A 5 )  

and u, = (vl u;l)4 = U , ( Z R - ~ ) ~ .  (A 6) 
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The area of the region concerned is of order 1,a so that the disturbance energy 
per unit length of pipe is of order 

u2,1Wa = a2U02(2R3)-4 = v2(R/2)*, (A 7) 

and so, large compared with that of the undamped centre disturbance. These 
scales imply that, for large Reynolds numbers, 

E^/(u:uE,a) = +rE(2R3)4, (A 8) 

is a function only of &l, = a(2R)-4, (A 9) 

as shown in figure 7. The calculations give a value of I? of 60ut,lWa for a, wave- 
number of 0-1 1 ~ 1 .  The vorticity of the disturbed mean flow is twice that of the 
basic flow a t  a distance 61, from the wall. 

Disturbances of given wave-number 

A scale analysis is also helpful in discussing disturbances of fixed wave-number. 
Take, for instance, a disturbance whose dimensional wave-number, & = aa-1, is 
small compared with 1 ~ 1  so that the downstream scale is large compared with the 
radial scale. The least-damped infinitesimal disturbance (Pekeris 1948; Gill 1965) 
has its vorticity confined to a thin region near the centre, and the flow is irrota- 
tional outside that region. The vorticity distribution of the disturbance represents 
a balance between advection, the curvature of the mean flow tending to sharpen 
gradieiits, and viscous diffusion which tends to smooth out gradients (Gill 1963). 
If 2 is the non-dimensional complex wave speed, and 1 is the radial length scale, 
this balance implies that 

&(U0-2) N &/  u0"p - vl-2, 

Z N (v/&l U:l)k = l,(&Z,)-~ = a(2aR)-t, 

U,,-t,. N ei N (&vlUbI)& = ~,(al,)-J = U,($aR)-g. 

(A 10) 

(A 11) 

(A 12) 

so that 

and 

Now harmonics generated by self-interaction of such a disturbance will also 
be irrotational outside a region of radius 1. Likewise the Reynolds stress and 
hence changes in the mean flow will be confined to a region of radius 1. For the 
fundamental to be significantly altered by self-interactions, it is necessary that 
advection of vorticity by the disturbance be as important as advection by the 
basic flow. Thus, if u is the disturbance velocity scale, it is required that 

u N u, - er N ti N u,(&l,)-s = U,(+aR)-k 

U l k 2  - uc1,2 N I ubl, 

(A 13)  

(A 14) 

It follows that the disturbance vorticity1radius is of order 

that is, of the same order as the basic flow. This is the same result as was found for 
the case when &I, is of order unity. 
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